Thursday, January 19, 2012

Hardening the TCP/IP stack to SYN attacks in Windows

All of us know how problematic protection against SYN denial of service attacks can be. Several methods, more or less effective, are usually used. In almost every case proper filtering of packets is a viable solution. In addition to creating packet filters, the modification of the TCP/IP stack of a given operating system can be performed by an administrator.

While SYN attacks may not be entirely preventable, tuning the TCP/IP stack will help reduce the impact of SYN attacks while still allowing legitimate client traffic through. It should be noted that some SYN attacks do not always attempt to upset servers, but instead try to consume all of the bandwidth of your Internet connection. This kind of flood is outside the scope.
What can an administrator do when his servers are under a classic, non-bandwidth flooding SYN attack? One of most important steps is to enable the operating system's built-in protection mechanisms like SYN cookies or SynAttackProtect. Additionally, in some cases it is worth tuning parameters of the TCP/IP stack. Changing the default values of stack variables can be another layer of protection and help better secure your hosts. We will concentrate on:
                      Increasing the queue of half-open connections (in the SYN RECEIVED state).
                      Decreasing the time period of keeping a pending connection in the SYN RECEIVED state in the queue.

Which is accomplished by decreasing the time of the first packet retransmission and by either decreasing the number of packet retransmissions or by turning off packet retransmissions entirely. The process of packet retransmissions is performed by a server when it doesn't receive an ACK packet from a client. A Packet with the ACK flag finalizes the process of the three-way handshake.
Note that an attacker can simply send more packets with the SYN flag set and then the above tasks will not solve the problem. However, we can still increase the likelihood of creating a full connection with legitimate clients by performing the above operations.
We should remember that our modification of variables will change the behavior of the TCP/IP stack. In some cases the values can be too strict. So, after the modification we have to make sure that our server can properly communicate with other hosts. For example, the disabling of packet retransmissions in some environments with low bandwidth can cause a legitimate request to fail.

We will discuss tuning parameters for Microsoft Windows first 

These variables are similar or the same in current releases.
Definitions: SYN flooding and SYN spoofing
A SYN flood is a type of Denial of Service attack. We can say that a victim host is under a SYN flooding attack when an attacker tries to create a huge amount of connections in the SYN RECEIVED state until the backlog queue has overflowed. The SYN RECEIVED state is created when the victim host receives a connection request (a packet with SYN flag set) and allocates for it some memory resources. A SYN flood attack creates so many half-open connections that the system becomes overwhelmed and cannot handle incoming requests any more.
To increase an effectiveness of a SYN flood attack, an attacker spoofs source IP addresses of SYN packets. In this case the victim host cannot finish the initialization process in a short time because the source IP address can be unreachable. This malicious operation is called a SYN spoofing attack.
We need to know that the process of creating a full connection takes some time. Initially, after receiving a connection request (a packet with SYN flag set), a victim host puts this half-open connection to the backlog queue and sends out the first response (a packet with SYN and ACK flags set). When the victim does not receive a response from a remote host, it tries to retransmit this SYN+ACK packet until it times out, and then finally removes this half-open connection from the backlog queue. In some operating systems this process for a single SYN request can take about 3 minutes! 
            The other important information to know is that the operating system can handle only a defined amount of half-open connections in the backlog queue. This amount is controlled by the size of the backlog queue. For instance, the default backlog size is 256 for RedHat 7.3 and 100 for Windows 2000 Professional. When this size is reached, the system will no longer accept incoming connection requests.
How to detect a SYN attack
It is very simple to detect SYN attacks. The netstat command shows us how many connections are currently in the half-open state. The half-open state is described as SYN_RECEIVED in Windows and as SYN_RECV in Unix systems.
# netstat -n -p TCP
tcp        0      0       SYN_RECV    -
tcp        0      0       SYN_RECV    -
tcp        0      0       SYN_RECV    -
tcp        0      0       SYN_RECV    -
tcp        0      0     SYN_RECV    -
tcp        0      0         SYN_RECV    -
tcp        0      0        SYN_RECV    -
tcp        0      0     SYN_RECV    -
tcp        0      0      SYN_RECV    -
We can also count how many half-open connections are in the backlog queue at the moment. In the example below, 769 connections (for TELNET) in the SYN RECEIVED state are kept in the backlog queue.
# netstat -n -p TCP | grep SYN_RECV | grep :23 | wc -l
The other method for detecting SYN attacks is to print TCP statistics and look at the TCP parameters which count dropped connection requests. While under attack, the values of these parameters grow rapidly.
In this example we watch the value of the TcpHalfOpenDrop parameter on a Sun Solaris machine.
# netstat -s -P tcp | grep tcpHalfOpenDrop
        tcpHalfOpenDrop     =   473
It is important to note that every TCP port has its own backlog queue, but only one variable of the TCP/IP stack controls the size of backlog queues for all ports.
The backlog queue
The backlog queue is a large memory structure used to handle incoming packets with the SYN flag set until the moment the three-way handshake process is completed. An operating system allocates part of the system memory for every incoming connection. We know that every TCP port can handle a defined number of incoming requests. The backlog queue controls how many half-open connections can be handled by the operating system at the same time. When a maximum number of incoming connections is reached, subsequent requests are silently dropped by the operating system.
As mentioned before, when we detect a lot of connections in the SYN RECEIVED state, host is probably under a SYN flooding attack. Moreover, the source IP addresses of these incoming packets can be spoofed. To limit the effects of SYN attacks we should enable some built-in protection mechanisms. Additionally, we can sometimes use techniques such as increasing the backlog queue size and minimizing the total time where a pending connection in kept in allocated memory (in the backlog queue).

Increasing the backlog queue

Under a SYN attack, we can modify the backlog queue to support more connections in the half-open state without denying access to legitimate clients. In some operating systems, the value of the backlog queue is very low and vendors often recommend increasing the SYN queue when a system is under attack.

Increasing the backlog queue size requires that a system reserve additional memory resources for incoming requests. If a system has not enough memory for this operation, it will have an impact on system performance. We should also make sure that network applications like Apache or IIS can accept more connections.

Decreasing total time of handling connection request

As we know, SYN flooding/spoofing attacks are simply a series of SYN packets, mostly from forged IP addresses. In the last section we tried to increase the backlog queue. Now that our systems can handle more SYN requests, we should decrease the total time we keep half-open connections in the backlog queue. When a server receives a request, it immediately sends a response with the SYN and ACK flags set, puts this half-open connection into the backlog queue, and then waits for a packet with the ACK flag set from the client. When no response is received from the client, the server retransmits a response packet (with the SYN and ACK flags set) several times (depending on default value in each operating system) by giving the client a chance to send the ACK packet again. It is clear that when the source IP address of client was spoofed, the ACK packet will never arrive. After a few minutes the server removes this half-open connection. We can speed up this time of removing connections in the SYN RECEIVED state from the backlog queue by changing time of first retransmission and by changing the total number of retransmissions.

Another technique of protection against SYN attacks is switching off some TCP parameters that are always negotiated during the three-way handshake process. Some of these parameters are automatically turned off by mechanisms described in the first section (SynAttackProtect and Syncookies).

Now, I will describe TCP/IP stack variables which allow a decrease in the time half-open connections are kept in the backlog queue
Built-in protection mechanisms of Windows
The most important parameter in Windows  is SynAttackProtect. Enabling this parameter allows the operating system to handle incoming connections more efficiently. The protection can be set by adding a SynAttackProtect DWORD value to the following registry key:
In general, when a SYN attack is detected the SynAttackProtect parameter changes the behavior of the TCP/IP stack. This allows the operating system to handle more SYN requests. It works by disabling some socket options, adding additional delays to connection indications and changing the timeout for connection requests.
When the value of SynAttackProtect is set to 1, the number of retransmissions is reduced and according to the vendor, the creation of a route cache entry is delayed until a connection is made. The recommended value of SynAttackProtect is 2, which additionally delays the indication of a connection to the Windows Socket until the three-way handshake is completed. During an attack, better performance in handling connections is achieved by disabling the use of a few parameters (these parameters are usually used by the system during the process of creating new connections). The TCPInitialRTT parameter, which defines the time of the first retransmission, will no longer work. It's impossible to negotiate the window size value. Also, the scalable windows option is disabled on any socket.
As we can see, by enabling the SynAttackProtect parameter we don't change the TCP/IP stack behavior until under a SYN attack. But even then, when SynAttackProtect starts to operate, the operating system can handle legitimate incoming connections.
The operating system enables protection against SYN attacks automatically when it detects that values of the following three parameters are exceeded. These parameters are TcpMaxHalfOpen, TcpMaxHalfOpenRetried and TcpMaxPortsExhausted.
To change the values of these parameters, first we have to add them to the same registry key as we made for SynAttackProtect.
The TcpMaxHalfOpen registry entry defines the maximum number of SYN RECEIVED states which can be handled concurrently before SYN protection starts working. The recommended value of this parameter is 100 for Windows 2000 Server and 500 for Windows 2000 Advanced Server.
TcpMaxHalfOpenRetried defines the maximum number of half-open connections, for which the operating system has performed at least one retransmission, before SYN protection begins to operate. The recommended value is 80 for Windows 2000 Server, and 400 for Advanced Server.
The TcpMaxPortsExhausted registry entry defines the number of dropped SYN requests, after which the protection against SYN attacks starts to operate. Recommended value is 5.

Aside from described above TcpMaxHalfOpen and TcpMaxHalfOpenRetried variables, in Windows the number of connections handled in the half-open state can be set through a dynamic backlog. Configuration of this dynamic backlog is accomplished via the AFD.SYS driver. This kernel-mode driver is used to support Windows Socket applications like FTP and Telnet. To increase the number of half-open connections, AFD.SYS provides four registry entries. All of these values, corresponding to AFD.SYS, are located under the following registry key:
The EnableDynamicBacklog registry value is a global switch to enable or disable a dynamic backlog. Setting it to 1 enables the dynamic backlog queue.
MinimumDynamicBacklog controls the minimum number of free connections allowed on a single TCP port. If the number of free connections drops below this value, then additional free connections are created automatically. Recommended value is 20.
The MaximumDynamicBacklog registry value defines the sum of active half-open connections and the maximum number of free connections. When this value is exceeded, no more free connections will be created by a system. Microsoft suggests that this value should not exceed 20000.
The last DynamicBacklogGrowthDelta parameter controls the number of free connections to be created when additional connections are necessary. Recommended value: 10.
The table below shows the recommended values for the AFD.SYS driver:
Subkey Registry Value Entry      Format  Value
EnableDynamicBacklog             DWORD            1
MinimumDynamicBacklog          DWORD            20
MaximumDynamicBacklog         DWORD            20000
DynamicBacklogGrowthDelta     DWORD           10
In Windows, the default time for a first retransmission is set to 3 seconds (3000 milliseconds) and can be changed by modifying the value of the TcpInitialRtt registry entry (for every interface). For example, to decrease time of a first retransmission to 2 seconds we have to set this registry value to 2000 milliseconds in decimal format. The number of retransmissions (packets with the SYN and ACK flags set) is controlled by a TcpMaxConnectResponseRetransmissions registry parameter which has to be added to HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters registry key.
The table below contains a few examples of values and corresponding times for keeping half-open connections in the backlog queue (the time of a first retransmission is set to 3 seconds).
<><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><> <><>


Time of retransmission

Total time to keep half-open connections in the backlog queue



1 second


in 2nd second

5 seconds


in 2nd and 5th second

10 seconds


In 2nd, 5th, 11th, 23rd and 47th second

1 minute

No comments: